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Auto-CO-AFM is an open-source software package for scanning probe microscopes that enables the 
automatic functionalization of scanning probe tips with carbon monoxide molecules. This enables 
machine operators to specify the quality of the tip needed utilizing a pre-trained library with off-the-
shelf software. From a single image, the software package can determine which molecules on a surface 
are carbon monoxide, perform the necessary tip functionalization procedures, interface with microscope 
software to control the tip position, and determines the centeredness of the tip after a successful 
functionalization. This is of particular interest for atomic force microscopy imaging of molecules on 
surfaces, where the tip functionalization is a necessary and time consuming step needed for sub-
molecular resolution imaging. This package is freely available under the MIT License.
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1. Introduction

The leading techniques in Scanning Probe Microscopy (SPM), 
Scanning Tunneling Microscopy (STM) [1] and Atomic Force Mi-
croscopy (AFM) [2] have enabled the investigation of surfaces [3–5]
and adsorbates on surfaces with atomic precision for a wide range 
of materials. STM utilizes an atomically sharp and biased metal 
tip to measure small currents from a conductive surface, based on 
the quantum mechanical tunnelling effect. On the other hand, AFM 
measures the interaction force between the tip and the substrate. 
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Fig. 1. Schematic pipeline of the autonomous tip preparation procedure. The forward direction is from left to right: a bare metal tip picks up individual CO molecule from 
the Cu(111) substrate; a tip terminated with a CO molecule scans over the surface to get the STM image of CO molecules on the substrate; STM images are used as input 
to a convolutional neural network (CNN) which transforms individual images into a classification of the CO-tip centeredness; based on quality of the tip, a decision is made 
whether to clean it and repeat the functionalization procedure, or to follow next step of STM/AFM experiment preparation.
Using modern non-contact AFM approaches operating in the fre-
quency modulation mode [6] and with stiff cantilevers and small 
oscillation amplitudes [7–9], it is possible to reach a regime where 
the tip-sample interaction is dominated by the chemical interac-
tions between the last atom of the tip with the topmost substrate 
atoms. Finally, it is possible to integrate both STM and AFM modes 
in the same experimental setup using quartz tuning fork force 
sensors, which allows mapping the STM and AFM responses of 
the surface simultaneously. The spatial contrast of STM and AFM 
depends on the geometric structure and the chemical species at 
the end of the tip [10]. Developments in the capability of vertical 
atomic and molecular manipulation in SPM [11], means that it is 
possible to functionalize the end of the SPM tip with single atoms 
and molecules [12–19]. In particular, by terminating the end of the 
metal tip with a carbon monoxide (CO) molecule [13], it is possi-
ble to reproducibly image organic molecules with sub-molecular 
resolution [14,20] in the AFM mode. However, despite the well-
defined process for functionalizing a CO molecule onto a metal tip, 
the process is not guaranteed to produce the required tip for ex-
perimental imaging in terms of the required tip stability, symmetry 
and the lack of spurious features in the resulting images.

There has been significant recent interest in automated meth-
ods for preparing and analyzing tip quality for the operator [21–
39]. These advances have helped move the field of SPM forward 
by reducing the time and resources spent on the preparation of 
metallic tips. Of these different methods, only a few have focused 
on a truly automated approach to tip conditioning and all have 
been focused only on STM tip preparation.

In this work, we build upon earlier ideas in automated STM 
tip preparation to automatically prepare functionalized CO tips. 
This is made possible through the application of a convolutional 
neural network (CNN) model [40] to identify the quality of CO 
functionalization, in conjunction with automated processes with 
experimental hardware to prepare a functionalized CO tip. To iden-
tify tip quality we take advantage of the fact that a CO molecule 
adsorbed on a Cu(111) surface can be utilized to image the tip 
apex, which is also the basis of the widely used carbon-monoxide 
front atom identification (COFI) method [41–43]. We perform STM 
imaging with a CO-functionalized tip apex, which gives charac-
teristic sombrero-shaped images of the surface adsorbed CO [13]
(see Fig. 1). The symmetry of these images allows determination of 
the configuration of the tip-adsorbed CO molecule and also distin-
guishes CO from other adsorbates on the substrate. Auto-CO-AFM 
provides a working model to identify CO molecules from a variety 
of other impurities, control the hardware to perform spectroscopy 
on a particular CO molecule, and then confirm that the tip has 
been functionalized and the quality of the functionalization.

This paper is organized as follows. In Section 2, we present the 
experimental methodology and in Section 3 the computational ap-
2

proach. In Section 4, we introduce an example of functionalizing a 
metal tip with a carbon monoxide molecule on a Cu(111) surface. 
In Section 5, we introduce a general overview of the software. In 
Section 6, we introduce the installation and basic usage.

2. Experimental setup

All experiments were performed with a Createc LT-STM/AFM 
with a commercial qPlus sensor with a Pt/Ir tip, operating at ap-
proximately T = 5 K in UHV at a pressure of 1 × 10−10 mbar. Tips 
were sharpened initially by electrochemical etching, then with fo-
cused ion beam [44] to ∼ 20 nm. In situ tip conditioning was 
performed with multiple, controlled indentations into the metal-
lic surface and applying bias pulses up to 2 V until the tip was 
sufficiently coated in Cu to observe single atom resolution. A pol-
ished Cu(111) single-crystal (MaTeck/Germany) was prepared by 
repeated Ne+ sputtering (0.75 keV, 15 mA, 20 min) and annealing 
(850-900 K, 5 min) cycles. Surface cleanliness was evaluated for 
impurities and terrace size using scanning tunneling microscopy 
(STM). Sample temperatures during annealing were measured with 
a pyrometer (SensorTherm Metis MI16).

CO was deposited onto the surface via a leak-valve connected to 
the microscope chamber. The shutter door was open for 10 s while 
CO gas was leaked into the chamber at a pressure of 1 × 10−6

mbar. During this time, the estimated sample temperature was 
< 30 K. After deposition, the system was cooled to approximately 
T = 5 K and CO coverage was verified via STM. During the exper-
iments, the tip apex was functionalized with a CO molecule [13]
and checked first by an operator, then later by the automated pro-
tocols described in this paper. The STM images were recorded in 
constant-current mode at multiple setpoint current and bias val-
ues.

3. Machine learning architecture

We consider a binary classification problem of assessing the 
quality of a CO functionalized tip to be good or bad. Input data 
is spatially ordered due to pixels’ relations in STM images. This 
makes it reasonable to consider a CNN approach for classifica-
tion. The model is implemented with the Tensorflow [45] machine 
learning package in Python. Our implementation of the model and 
the trained weights can be found at our Github page [46].

We present here an artificial neural network (ANN) architec-
ture which includes a CNN based encoder and a binary classifier 
(see (Table 1)). The encoder part of the network has two convo-
lutions blocks, each with two 2D convolutional layers (‘2D Conv’ 
on Fig. 1). The first block is followed by the Average Pooling layer 
that reduces the size of activation maps by a factor of 2 in (x, y)

dimensions. The amount of channels remains unchanged. Then we 
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Table 1
Model architecture. Amount of trainable parameters: 2157.

Layer type Output dimension Kernel size Stride Parameters

Input 16 × 16 × 1 – – –
2D Conv 14 × 14 × 4 3 × 3 (1,1) 40
2D Conv 12 × 12 × 4 3 × 3 (1,1) 148
Avg Pool 6 × 6 × 4 2 × 2 (2,2) –
Dropout 6 × 6 × 4 – – –
2D Conv 4 × 4 × 8 3 × 3 (1,1) 296
2D Conv 2 × 2 × 8 3 × 3 (1,1) 584
Dropout 2 × 2 × 8 – – –
Flatten 32 – – –
Dense 32 – – 1056
Dense 1 – – 33

apply a Dropout layer which randomly vanishes input values with 
an adjustable rate. A Dropout (0.25) is applied after each of two 
convolutional blocks (basically randomly vanishing 1/4 of inputs). 
The number of output channels of ‘2D Conv’ layers is 4 in the first 
block, and it doubles to 8 in the second block. The main idea of 
using two similar sets of convolutional layers is that they process 
input images with a different level of complexity. The filter size 
for 2D convolution layers is 3 × 3 and stride equals 1. There is 
no padding before the convolutional layers. The pooling layer has 
kernel size 2 × 2 with the same stride, which makes it a non-
overlapping operation.

In the classifier head, which follows the encoder, the spatially 
structured convolutional layers are flattened into fully connected 
layers. The classification is performed with two dense (fully-
connected) layers (‘Dense’ on Fig. 1) with sizes 32 and 1. Output 
from last layer then yields us a prediction of tip quality measured 
in a range from 0 (Bad CO tip) to 1 (Good CO tip).

Activation functions follow each layer of the CNN to introduce 
non-linearity in the process of collecting features. The Rectified 
Linear Unit (ReLU) activation function was applied for all layers 
except the last one:

ReLU(z) = max(0, z), (1)

which basically cuts the negative part of activation from convolu-
tion layer leaving unchanged positive values.

The last layer uses the Sigmoid activation function:

S(z) = 1

1 + e−z
, (2)

which fits output values into a [0,1] range for assessment of the 
CO tip’s quality.

This type of architecture allows the effective feature extraction 
with a minimal number of trainable parameters.

3.1. Loss function

For a binary classification problem the standard loss function is 
a binary cross entropy:

Loss = − (y log(p) + (1 − y) log(1 − p)) , (3)

where y – true values, and p – predictions of a model. We choose 
the Adaptive Moment Estimation (Adam) [47] as optimizer for the 
gradient descent. We set the learning rate to 0.001 and the decay 
to 10−5, otherwise we use the default parameters as defined in 
Keras [48].

3.2. Training data

The challenge of assessing tip quality is a binary classification 
problem. Human-labeled experimental STM data was used to train 
3

the CNN classifier. Our database contains 21 and 45 images with 
multiple bad and good samples correspondingly. Each STM im-
age includes several CO molecules which are tilted based on the 
tip functionalization orientation. To ensure a direct comparison, a 
SURF algorithm was applied to split and rescale each CO molecule 
to 16 × 16 pixels. The total dataset consists of 346 samples of CO 
molecules with approximately an 80/20 train/test split ratio. In-
dividual images of CO-terminated tips have strong correlation to 
other images cropped from the same experimental STM image, 
since the orientation of the functionalized CO remains the same. In 
order to ensure that the test set is uncorrelated with the training 
set, the sets should be split by source STM images. Augmentation 
was applied for training data (flips, rotations) and regularization 
during training process (Dropouts) [49] in order to expand beyond 
the limited amount of available experimental data.

4. Results

To visualize the performance of CNN classifier we plotted its 
results on a test set with experimental AFM data sorted by most 
and least accurate predictions in Fig. 3. We can conclude that with 
the default settings of threshold = 0.5 for splitting into positive 
and negative classes, very good results are obtained.

4.1. Accuracy metrics

A more accurate picture of results is presented in a confusion 
matrix (see in the left at Fig. 4). A confusion matrix describes the 
performance of a classification model on a test data set. It has 
four cells which count the following events: true negative predic-
tion (TN), false positive (FP), false negative (FN) and true positive 
(TP). It allows easy identification of mislabeling between classes. 
We consider here positive and negative events correspond to good 
or bad CO tips detected. Most performance measures are computed 
from the confusion matrix components:

Accuracy (ACC) is given by the relation:

ACC = TP + TN

TP + TN + FP + FN
(4)

and reflects the rate of correctly classified CO tips.
Sensitivity, Recall or True Positive Rate (TPR) is the ratio of cor-

rectly predicted good tip examples divided by true number of 
good CO tips. High Recall indicates the class is correctly recognized 
(small number of FN). Recall is given by the relation:

Recall = TP

TP + FN
(5)

Value of precision is the number of correctly classified good CO 
tip samples divided by the total number of tips predicted as good. 
A high Precision indicates that samples labeled as good are indeed 
good (small number of FP). Precision is given by the relation:

Precision = TP

TP + FP
(6)

An F-score combines Precision and Recall by use of an Harmonic 
Mean in place of an Arithmetic Mean, punishing extreme values 
more. The F-score will always be nearer to the smaller value of 
Precision or Recall.

F-score = 2 · Recall · Precision

Recall + Precision
(7)

Fall-out or False Positive Rate (FPR) is the probability of a bad 
CO tip being predicted as a good one:

FPR = FP

FP + TN
(8)
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Fig. 2. Formation of the training database with CO-functionalized tips. Left Example experimental image with identified surface COs highlighted. Right Examples from the 
training dataset. Top-right Random 20 bad CO-functionalized tips on Cu(111) substrate at similar tip-sample distances from our training database are shown. The CO tips are 
not centered or contain significant measurement artifacts. Bottom-right Random 20 good CO-functionalized tips on Cu(111) substrate at similar tip-sample distances from our 
training database are shown. CO tips are centered, which meets the target tip state.

Fig. 3. An illustration of a trained CNN classifier performance on STM images of individual CO molecules from the test set. Samples are sorted by the accuracy of the predicted 
class: with the best predictions (on the left) and the worst predictions (on the right) for the both classes. Bad CO tip examples are on the top row and the good CO tips are 
on the bottom.

Fig. 4. A summary of prediction results of CO tips classifier: a confusion matrix at 0.9 confidence level, numerical metrics of success and a ROC curve. In the confusion matrix, 
the number of correct and incorrect predictions are summarized with count values and broken down by each class: true negative prediction (TN), false positive (FP), false 
negative (FN) and true positive (TP). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
In the goal of automatizing the assessment of CO tip quality, we 
care mostly about reducing the false positive rate (FPR) and suffer 
less from false negative cases. In other words, we want to find a 
balance between TPR and FPR which are directly affected by set-
ting of discrimination threshold (initially is 0.5) to split probabil-
ity between two classes. A receiver operating characteristic curve, 
or ROC curve, is created by plotting the true positive rate (TPR) 
against the false positive rate (FPR) at various threshold settings 
(see in the right of Fig. 4). The area under the curve (AUC = 0.993) 
indicates the quality of the classification model in comparison to 
a random guess model, along the diagonal with AUC = 0.5, and 
best model with AUC = 1.0. On this plot, reducing of the threshold 
parameter initially increases TPR very quickly at a low FPR (that 
is a good thing), and later as the FPR increases, the TPR remains 
constant. The optimal threshold can be always adjusted later, but 
4

for the pretrained model on the current test data set the value of 
threshold = 0.9 looks to be a reasonable choice. Overall, all accu-
racy metrics demonstrate reliable results for the proposed CO tip 
quality classifier.

5. Software overview

We utilize machine learning to automate tip functionalization 
for CO-terminated tips on a Cu(111) surface. It is based on a 
CNN pipeline Fig. 1, which is trained to recognize and assess the 
centeredness of a CO-terminated tip. By averaging the prediction 
values of the visible CO molecules on a Cu(111) substrate, it is pos-
sible to determine the CO functionalization quality. This process is 
repeated until a target CO tip is found.
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1. The user prepares a metallic tip to single atom resolution.
2. Utilizing a Speeded Up Robust Features (SURF) algorithm [50], 

the software identifies the target CO molecule, then performs 
vertical spectroscopy over the center of the CO with the fol-
lowing parameters: 2.6 V at an initial set-point of 0.1 V and 
100 pA.

3. Rescanning the same area confirms the success or failure of tip 
functionalization. After multiple tip functionalization failures, 
the software will attempt a tip cleaning with user defined pa-
rameters at a location away from the target area. If multiple 
failures are still detected, the system will return control back 
to the user.

4. In case of successful tip termination, the CO centeredness is 
determined. To achieve high resolution and details in AFM ex-
periment, the CO molecule should terminate the tip as close 
as possible to orthogonal to Cu(111) surface. After the tip ter-
mination procedure the tip CO molecule is obviously no longer 
visible and the quality of CO-functionalized tip is assessed by 
imaging of other CO molecules on a Cu(111) surface.

5. A local features detector algorithm is utilized to grab individ-
ual images for each distinguishable CO molecule on a Cu(111) 
surface (see in the left of Fig. 2). SURF is again used to au-
tomatically split STM images into individual images of CO 
molecules. A random subset of such individual tip’s images 
demonstrate broken symmetry for bad CO tips and high cen-
teredness for good CO tips (see in the right of Fig. 2).

6. At the last stage of automated process for preparing a high-
quality tip for an AFM experiment we implement a trained 
classifier based on artificial neural networks. The trained 
model outputs a probability value which measures CO tip cen-
teredness (with a range from 0 – for bad CO tips to 1 – for 
good CO tips). Bad CO tips are not centered or contain signif-
icant measurement artifacts (see the top-right of Fig. 2). Good
CO tips are centered, which meets the target tip state (see the 
bottom-right of Fig. 2). Averaging of prediction values achieved 
for visible CO molecules on a Cu(111) substrate provides a 
metric for the CO functionalized tip quality. A CNN model was 
trained to accomplish this task, using a human-labeled dataset 
of experimental STM images with CO molecules for training.

6. Software installation and usage

The Auto-CO-AFM software package is fully open source, re-
leased on Github under the MIT License, https://github .com /
SINGROUP /Auto -CO -AFM /blob /main /LICENSE, and it can be down-
loaded directly from the public code archive: https://github .com /
SINGROUP /Auto -CO -AFM.

To run the Auto-CO software with CreaTec STM integration, it is 
necessary to install Anaconda on Windows along with the CreaTec 
STMAFM software (or use a virtual environment to run the Cre-
aTec software in another OS), in addition to the CreaTec STMAFM 
COM Automation Server. In Anaconda, create the required Python 
environment with:

$ conda env create −f environment . yml

This will create a conda enviroment named tf-gpu with the 
all the required packages. It also has a suitable version of the 
CUDA toolkit and cuDNN already installed. Activate the environ-
ment with:

$ conda a c t i v a t e py3−tf12

To create the datasets and train the models, run a Jupyter note-
book in the repository folder, open the train _TF.ipynb notebook, 
and follow the instructions therein. The folder pretrained _weights
holds the weights for pretrained model. To predict quality of 
5

CO tips on some set of images, open the predict _TF.ipynb note-
book, and follow the instructions therein. To run an automated CO 
pickup, open auto -co .ipynb and follow the instructions.

7. Conclusions

In conclusion, we have introduced an efficient automated tip 
functionalization method which is capable of determining the tip 
functionalization quality for SPM experiments and can perform tip 
conditioning until the target tip functionalization is found. This 
method is based on a CNN that continually evaluates the tip state 
by reviewing over images for changes in the tip condition. This 
was tested by training a system on images of centered and non-
centered CO tips on a Cu(111) substrate. For experiments requiring 
functionalized tips, the increased efficiency in preparation trans-
lates directly into additional experimental measurement time. This 
method requires no additional hardware to implement, allowing 
for its application in existing SPM laboratories. The combination of 
existing, open-source libraries and a small dataset would enable 
any size of lab to effectively utilize this method. For future devel-
opments, we would anticipate that this method would work on 
a variety of different substrates and tip types, leading to a wider 
variety of tip functionalizations compared to the widely-used stan-
dard of CO tips.
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